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MCP-Auto-ML Technical Report

1. Prerequisites

1.1 System Requirements

Component Requirement Purpose

Python 3.10+ with uv package manager runtime environment

Database MongoDB 6.0+ Database

Cloud Storage AWS S3 bucket Model storage

Credentials Kaggle API key Dataset downloads

MCP Client Claude/Anthropic or compatible Protocol interaction

Networking Ports 8000 (MCP) & 27017 (MongoDB) Service communication

The following are system requirements. These need to be filled out in-order to have access to all of the MPC
tools.

1.2 Initial Setup

# Install core dependencies using uv 
uv pip install "fastapi>=0.110" "pandas>=2.2" "scikit-learn>=1.4"  
"boto3>=1.34" "pymongo>=4.6" "kaggle>=1.6" "joblib>=1.3" 
 
# Configure environment variables
echo "AWS_ACCESS_KEY_ID=your_key" >> .env 
echo "S3_BUCKET=your-bucket-name" >> .env 

The uv package manager must be used to start the project.

2. Tech Stack Architecture

Layer Components Protocol Integration

Data Ingestion Kaggle API, pandas CSV parsing MCP tools: download_kaggle_dataset

Data Processing pandas, scikit-learn preprocessing MCP tools: clean_dataset, transform

ML Modeling scikit-learn, GridSearchCV MCP tools: train_model, hyperparameter

Cloud Integration boto3 (AWS S3), pymongo MCP tools: save_model_to_s3

Visualization matplotlib, seaborn MCP tools: visualize_data_distribution

API Server FastAPI, JSON-RPC 2.0 MCP protocol implementation



MCP-Auto-ML Technical Report.md 2025-05-10

2 / 7

3. Core Tool Implementation

3.1 Data Ingestion Tools

download_kaggle_dataset()

@mcp.tool(description="Download Kaggle dataset")
async def download_kaggle_dataset(name: str, kaggle_url: str) -> str: 
    # Regex extraction of dataset ID 
    match = re.search(r"kaggle\.com/datasets/([^/]+/[^/?#]+)", kaggle_url) 
     
    # Kaggle API authentication 
    api = KaggleApi() 
    api.authenticate() 
     
    # Temporary directory for download 
    with tempfile.TemporaryDirectory() as tmp_dir: 
        api.dataset_download_files(match.group(1), path=tmp_dir, unzip=True) 
        csv_file = next(f for f in os.listdir(tmp_dir) if f.endswith(".csv")) 
         
        # Load into pandas and cache 
        df = pd.read_csv(os.path.join(tmp_dir, csv_file)) 
        dataset_cache[name] = df 

Parameters:

name: Dataset identifier for caching
kaggle_url: URL pattern: https://www.kaggle.com/datasets/<user>/<dataset>

The following tool is used to submit Kaggle dataset links. The tool, takes in the link then downloads the
dataset for local use. It uses the Kaggle api to be able to access the datasets. The Kaggle api requires a
Kaggle.json configuration file to be in the system. Once configured, it will be able to download any Kaggle
dataset.

3.2 Data Processing Tools

clean_dataset()

@mcp.tool(description="Data cleaning pipeline")
async def clean_dataset(name: str, encode_categoricals: bool = True) -> str: 
    df = dataset_cache[name] 
     
    # Missing value handling 
    for col in df.columns: 
        if df[col].dtype in ['float64', 'int64']: 
            df[col].fillna(df[col].mean(), inplace=True) 
        elif df[col].dtype == 'object': 
            df[col].fillna(df[col].mode()[^0], inplace=True) 
     
    # Deduplication 
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    df = df.drop_duplicates() 
     
    # Categorical encoding 
    if encode_categoricals: 
        df = pd.get_dummies(df, drop_first=True) 
     
    dataset_cache[name] = df 

Data Flow:

Raw Data → Missing Value Imputation → Deduplication → One-Hot Encoding → Clean 
Data 

The following tool reads the dataset and cleans the data. It gets updates missing values, where if is an object,
it uses the mode and if it uses numbers, then the mean. It also removed duplicates as well as encode the
categorical columns to numbers. The tool finalizes the dataset to be ready for visualization and training.

3.3 Model Training Tools

train_model()

@mcp.tool(description="Model training endpoint")
async def train_model(name: str, target_column: str,  
                     model_type: str = "classification",  
                     model_name: Optional[str] = None) -> str: 
     
    X = df.drop(columns=[target_column]) 
    y = df[target_column] 
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 
     
    model = self._get_model(model_type, model_name) 
    model.fit(X_train, y_train) 
     
    # Metrics calculation 
    if model_type == "classification": 
        acc = accuracy_score(y_test, model.predict(X_test)) 
        return f"Accuracy: {acc:.4f}" 
    else: 
        mse = mean_squared_error(y_test, model.predict(X_test)) 
        return f"MSE: {mse:.4f}"

Supported Models:

{ 
    "classification": { 
        "logistic_regression": LogisticRegression(max_iter=1000), 
        "random_forest": RandomForestClassifier(n_estimators=100), 
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        "svm": SVC(kernel='linear') 
    }, 
    "regression": { 
        "linear_regression": LinearRegression(), 
        "random_forest": RandomForestRegressor(n_estimators=100) 
    } 
} 

The following tool is the heart of the program. It takes in the name of the dataset, the target variable, the type
of model, and the specific model. For classification, i t is able to train logistic regression, random forest, and
svm. For regression, it trains linear regression or random forest regressor. After training the model it provides
an overall accuracy that was achieved. MSE for regression and accuracy for classification.

3.4 Cloud Integration Tools

save_model_to_s3()

@mcp.tool(description="Model persistence to AWS")
async def save_model_to_s3(name: str) -> str: 
    model = model_cache[name] 
    local_file = f"{name}_model.pkl" 
     
    # Joblib serialization 
    joblib.dump(model, local_file) 
     
    # Boto3 S3 upload 
    s3_client.upload_file(local_file, S3_BUCKET, local_file) 
     
    # Cleanup 
    os.remove(local_file) 

AWS IAM Requirements:

{ 
    "Version": "2012-10-17", 
    "Statement": [{ 
        "Effect": "Allow", 
        "Action": ["s3:PutObject"], 
        "Resource": "arn:aws:s3:::your-bucket/*" 
    }] 
} 

This tool saves the model to AWS S3 bucket. Any successfully trained model is stored to the user's cloud
bucket incase they wish to use it or improve it in the future. It requires the boto3 library, and the system needs
to be set up with the aws credentials.

4. Protocol Implementation Details
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4.1 MCP Server Configuration

class FastMCP: 
    def __init__(self, name: str): 
        self.app = FastAPI() 
        self.tools = [] 
         
        @self.app.post("/tools/execute") 
        async def execute_tool(request: Dict[str, Any]): 
            tool = next(t for t in self.tools if t['name'] == request['tool']) 
            return await tool['function'](**request['parameters']) 

This is what sets up the MCP Server. The code starts up the MCP server, which is ready to be given to a LLM.
The MCP server will act as a context book or a tool box for the LLM to use when dealing with machine
learning tasks.

4.2 JSON-RPC Communication

// Client Request 
{ 
    "jsonrpc": "2.0", 
    "id": 1, 
    "method": "tools/execute", 
    "params": { 
        "tool": "train_model", 
        "parameters": { 
            "name": "heart_disease", 
            "target_column": "cp", 
            "model_type": "classification" 
        } 
    } 
} 
 
// Server Response 
{ 
    "jsonrpc": "2.0", 
    "id": 1, 
    "result": "Classification model trained. Accuracy: 0.9457" 
} 

This is how the client (Claude) sends requests to the MCP tool. The server processes the request, then sends a
message back based on which tool was used. In the example, the machine learning tool was used, and it
returns back the result of the model that was trained.

5. Optimization

5.1 Caching
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dataset_cache: Dict[str, pd.DataFrame] = {} 
model_cache: Dict[str, Any] = {} 
 
def _get_cached_item(cache: Dict, name: str) -> Any: 
    if name not in cache: 
        raise ValueError(f"Item '{name}' not in cache") 
    return cache[name] 

The following helps increase the speed of the responses, and prevents continues calls to Kaggle. Caching uses
O(1) look up complexity and helps save memory for the calls to the dataset. It also prevents duplication of the
dataset for occurring during the process.

5.2 Parallel Processing

# GridSearchCV configuration for hyperparameter tuning 
GridSearchCV( 
    estimator=model, 
    param_grid=param_grid, 
    cv=5, 
    n_jobs=-1,  # Utilize all CPU cores 
    verbose=2 
) 

The following uses parallel processing to help search through possible parameters of the model, and look for
the best one available. n_jobs = -1, uses multiple CPU cores to help receive a faster response for the best
hyper-parameter.

6. Validation Metrics

Stage Metric Heart Disease Dataset Result

Data Cleaning Final Shape 919 rows × 23 columns

Model Training Accuracy (Logistic Reg) 94.57%

Hyperparameter Tuning Best Parameters {'C': 1, 'penalty': 'l2'}

Cloud Persistence S3 Object Size 1.7 KB (serialized model)

The following the validation metrics for each of the tools. Clean tool will output the new shape of the data
frame. Model training will output Accuracy. Hyperparameter tuning, will out the best parameters in the model.
Cloud Persistence will output the size and where the model was stored.

Comparison: MCP-Auto-ML vs. Paid LLMs
MCP-Auto-ML extends what paid LLMs can do by providing real, automated execution of machine learning
workflows and direct control over storage and deployment along with dataset. Paid LLMs, by themselves, are
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limited to generating code or text-they cannot execute and keep a consistent workflow. LLM's can't execute
code or deploy applications. MCP is able to provide LLM's the ability to do, while maintaining security.

Key Differences

Feature/Capability MCP-Auto-ML Paid LLMs (GPT-4, Gemini, etc.)

Code Execution
Directly runs Python code,
automates tasks

Cannot execute code, only generate
text/code

Cloud Deployment
Saves models to AWS S3, data to
MongoDB

Cannot deploy or persist models/data

Workflow Automation Orchestrates multi-step ML pipelines
Can only describe steps or generate
scripts

Tool/API Integration
Calls real APIs (Kaggle, AWS,
MongoDB, etc.)

No native tool or API integration

Live Data Access
Downloads and processes external
datasets

Cannot fetch or process external data

Result Persistence
Stores models and datasets for
future use

No ability to persist or retrieve results

Token/Context
Efficiency

Feeds only relevant data to
LLM/agent

Limited by context window and token
limits

Open
Protocol/Extensibility

Open, can be extended with new
tools easily

Closed, proprietary APIs

Security/User Control
User controls data flow and
execution

Data leaves user control, less
transparent

7. Conclusion
The MCP-Auto-ML system implements a complete ML pipeline through 10 specialized tools following the
Model Context Protocol standard. It is able to give extensions to LLM's that they orginally couldn't do. MCP
can give access to LLM's to be able to use external tools to complete the tasks given. Future enhancements
could integrate AWS MCP Servers for improved cloud resource management and implement the new releases
that is released by MCP. MCP is relatively new, so there is more enhacements to come in the future.


